Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Neurophysiol ; 39(7): 567-574, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2107708

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) has significantly impacted healthcare delivery and utilization. The aim of this article was to assess the impact of the COVID-19 pandemic on in-hospital continuous electroencephalography (cEEG) utilization and identify areas for process improvement. METHODS: A 38-question web-based survey was distributed to site principal investigators of the Critical Care EEG Monitoring Research Consortium, and institutional contacts for the Neurodiagnostic Credentialing and Accreditation Board. The survey addressed the following aspects of cEEG utilization: (1) general center characteristics, (2) cEEG utilization and review, (3) staffing and workflow, and (4) health impact on EEG technologists. RESULTS: The survey was open from June 12, 2020 to June 30, 2020 and distributed to 174 centers with 79 responses (45.4%). Forty centers were located in COVID-19 hotspots. Fifty-seven centers (72.1%) reported cEEG volume reduction. Centers in the Northeast were most likely to report cEEG volume reduction (odds ratio [OR] 7.19 [1.53-33.83]; P = 0.012). Additionally, centers reporting decrease in outside hospital transfers reported cEEG volume reduction; OR 21.67 [4.57-102.81]; P ≤ 0.0001. Twenty-six centers (32.91%) reported reduction in EEG technologist coverage. Eighteen centers had personal protective equipment shortages for EEG technologists. Technologists at these centers were more likely to quarantine for suspected or confirmed COVID-19; OR 3.14 [1.01-9.63]; P = 0.058. CONCLUSIONS: There has been a widespread reduction in cEEG volume during the pandemic. Given the anticipated duration of the pandemic and the importance of cEEG in managing hospitalized patients, methods to optimize use need to be prioritized to provide optimal care. Because the survey provides a cross-sectional assessment, follow-up studies can determine the long-term impact of the pandemic on cEEG utilization.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Cross-Sectional Studies , Electroencephalography/methods , Critical Care , Monitoring, Physiologic/methods
2.
Sci Adv ; 8(16): eabm3952, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1807300

ABSTRACT

Brain imaging is essential to the clinical management of patients with ischemic stroke. Timely and accessible neuroimaging, however, can be limited in clinical stroke pathways. Here, portable magnetic resonance imaging (pMRI) acquired at very low magnetic field strength (0.064 T) is used to obtain actionable bedside neuroimaging for 50 confirmed patients with ischemic stroke. Low-field pMRI detected infarcts in 45 (90%) patients across cortical, subcortical, and cerebellar structures. Lesions as small as 4 mm were captured. Infarcts appeared as hyperintense regions on T2-weighted, fluid-attenuated inversion recovery and diffusion-weighted imaging sequences. Stroke volume measurements were consistent across pMRI sequences and between low-field pMRI and conventional high-field MRI studies. Low-field pMRI stroke volumes significantly correlated with stroke severity and functional outcome at discharge. These results validate the use of low-field pMRI to obtain clinically useful imaging of stroke, setting the stage for use in resource-limited environments.

3.
Chest ; 161(1): 140-151, 2022 01.
Article in English | MEDLINE | ID: covidwho-1401306

ABSTRACT

Considering the COVID-19 pandemic where concomitant occurrence of ARDS and severe acute brain injury (sABI) has increasingly coemerged, we synthesize existing data regarding the simultaneous management of both conditions. Our aim is to provide readers with fundamental principles and concepts for the management of sABI and ARDS, and highlight challenges and conflicts encountered while managing concurrent disease. Up to 40% of patients with sABI can develop ARDS. Although there are trials and guidelines to support the mainstays of treatment for ARDS and sABI independently, guidance on concomitant management is limited. Treatment strategies aimed at managing severe ARDS may at times conflict with the management of sABI. In this narrative review, we discuss the physiological basis and risks involved during simultaneous management of ARDS and sABI, summarize evidence for treatment decisions, and demonstrate these principles using hypothetical case scenarios. Use of invasive or noninvasive monitoring to assess brain and lung physiology may facilitate goal-directed treatment strategies with the potential to improve outcome. Understanding the pathophysiology and key treatment concepts for comanagement of these conditions is critical to optimizing care in this high-acuity patient population.


Subject(s)
Brain Injuries/complications , Brain Injuries/therapy , Disease Management , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , COVID-19 , Humans , SARS-CoV-2
4.
Ann Neurol ; 89(5): 872-883, 2021 05.
Article in English | MEDLINE | ID: covidwho-1148790

ABSTRACT

OBJECTIVE: The aim was to determine the prevalence and risk factors for electrographic seizures and other electroencephalographic (EEG) patterns in patients with Coronavirus disease 2019 (COVID-19) undergoing clinically indicated continuous electroencephalogram (cEEG) monitoring and to assess whether EEG findings are associated with outcomes. METHODS: We identified 197 patients with COVID-19 referred for cEEG at 9 participating centers. Medical records and EEG reports were reviewed retrospectively to determine the incidence of and clinical risk factors for seizures and other epileptiform patterns. Multivariate Cox proportional hazards analysis assessed the relationship between EEG patterns and clinical outcomes. RESULTS: Electrographic seizures were detected in 19 (9.6%) patients, including nonconvulsive status epilepticus (NCSE) in 11 (5.6%). Epileptiform abnormalities (either ictal or interictal) were present in 96 (48.7%). Preceding clinical seizures during hospitalization were associated with both electrographic seizures (36.4% in those with vs 8.1% in those without prior clinical seizures, odds ratio [OR] 6.51, p = 0.01) and NCSE (27.3% vs 4.3%, OR 8.34, p = 0.01). A pre-existing intracranial lesion on neuroimaging was associated with NCSE (14.3% vs 3.7%; OR 4.33, p = 0.02). In multivariate analysis of outcomes, electrographic seizures were an independent predictor of in-hospital mortality (hazard ratio [HR] 4.07 [1.44-11.51], p < 0.01). In competing risks analysis, hospital length of stay increased in the presence of NCSE (30 day proportion discharged with vs without NCSE: HR 0.21 [0.03-0.33] vs 0.43 [0.36-0.49]). INTERPRETATION: This multicenter retrospective cohort study demonstrates that seizures and other epileptiform abnormalities are common in patients with COVID-19 undergoing clinically indicated cEEG and are associated with adverse clinical outcomes. ANN NEUROL 2021;89:872-883.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Electroencephalography/trends , Seizures/epidemiology , Seizures/physiopathology , Aged , COVID-19/diagnosis , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Seizures/diagnosis , Treatment Outcome
5.
JAMA Neurol ; 2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-746366

ABSTRACT

IMPORTANCE: Neuroimaging is a key step in the clinical evaluation of brain injury. Conventional magnetic resonance imaging (MRI) systems operate at high-strength magnetic fields (1.5-3 T) that require strict, access-controlled environments. Limited access to timely neuroimaging remains a key structural barrier to effectively monitor the occurrence and progression of neurological injury in intensive care settings. Recent advances in low-field MRI technology have allowed for the acquisition of clinically meaningful imaging outside of radiology suites and in the presence of ferromagnetic materials at the bedside. OBJECTIVE: To perform an assessment of brain injury in critically ill patients in intensive care unit settings, using a portable, low-field MRI device at the bedside. DESIGN, SETTING, AND PARTICIPANTS: This was a prospective, single-center cohort study of 50 patients admitted to the neuroscience or coronavirus disease 2019 (COVID-19) intensive care units at Yale New Haven Hospital in New Haven, Connecticut, from October 30, 2019, to May 20, 2020. Patients were eligible if they presented with neurological injury or alteration, no contraindications for conventional MRI, and a body habitus not exceeding the scanner's 30-cm vertical opening. Diagnosis of COVID-19 was determined by positive severe acute respiratory syndrome coronavirus 2 polymerase chain reaction nasopharyngeal swab result. EXPOSURES: Portable MRI in an intensive care unit room. MAIN OUTCOMES AND MEASURES: Demographic, clinical, radiological, and treatment data were collected and analyzed. Brain imaging findings are described. RESULTS: Point-of-care MRI examinations were performed on 50 patients (16 women [32%]; mean [SD] age, 59 [12] years [range, 20-89 years]). Patients presented with ischemic stroke (n = 9), hemorrhagic stroke (n = 12), subarachnoid hemorrhage (n = 2), traumatic brain injury (n = 3), brain tumor (n = 4), and COVID-19 with altered mental status (n = 20). Examinations were acquired at a median of 5 (range, 0-37) days after intensive care unit admission. Diagnostic-grade T1-weighted, T2-weighted, T2 fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences were obtained for 37, 48, 45, and 32 patients, respectively. Neuroimaging findings were detected in 29 of 30 patients who did not have COVID-19 (97%), and 8 of 20 patients with COVID-19 (40%) demonstrated abnormalities. There were no adverse events or complications during deployment of the portable MRI or scanning in an intensive care unit room. CONCLUSIONS AND RELEVANCE: This single-center series of patients with critical illness in an intensive care setting demonstrated the feasibility of low-field, portable MRI. These findings demonstrate the potential role of portable MRI to obtain neuroimaging in complex clinical care settings.

SELECTION OF CITATIONS
SEARCH DETAIL